
PIPELINING BETWEEN JMSL AND Quintet.net

Adam Siska

Budapest University of Technology and Economics
Ferenc Liszt Academy of Music, Budapest

Abstract

Although Quintet.net is an appropriate tool for networked, real-time performances, until now it could use only static score sources
(scores previously engraved with the Score Editor of the Quintet.net CDK). On the other hand, there were professional software to
produce musical data in real-time since a long time ago. JMSL is one of these professional environments, which is able to produce
algorithmical music data in real-time.

The evident claim of connecting these two environments, however, raises to several problems to resolve. As there is a conceptual
difference between the data models used by these two systems, an external tool must be developed to carry out the conversion between
these data models. Although it would be enough a simple data conversion tool, the need for future expansion possibilities leads to the
developement of a stand-alone translator object with its own, extended data model.

This data model must be planned with the aim of getting a structure which would be able to represent scores imported from many
different formats. To obtain this, it’ll proved that although tree structures could be used to represent many scores, they are basically not
good enough to represent any kind of score. With this in mind, we’ll present a new data model that has the structure of a directed graph.
This is a good decision, as tree structures are subsets of directed graphs – so data importing issues can easily be solved – and directed
graphs can hold musical information that trees can’t hold in some cases presented below as well.

As Quintet.net doesn’t have an own – automatized – engraving tool, an engraving tool is to be developed and added to the data
exporting module as well. This engraving tool has to be as simple as possible, however, some parameters should be set externally to
take control over the exact behaviour of the engraver. With this last step, we’ll be able to send musical data obtained with algorithmical
routines of JMSL to the Quintet.net score engine in real-time, thus we’ll manage to enter to the world of real-time network music
performances based on dynamically created music material.

1 Introduction

Quintet.net, a network performance environment created and
maintained by Georg Hajdu is a powerful tool for networked,
real-time music performances. As a real-time environment, one
of its important features is that it can display scores on a screen
for the players, thus the musicians are able to play their parts.
[HAJDU, 2005] As one can see, an interesting question related to
this engine is the source of the displayed scores. Until now, there
were basically two different kind of score sources for Quintet.net:
the so-called „performance notation”, and the „score notation”.

Performance notation is a simple way for achieving basic real-
time notation. The score generated this way is in space notation,
but these scores only display the currently played material.

In score notation one can create a score with the Score Editor
of the Composition Development Kit of Quintet.net. Later this
score can be loaded by the engine and displayed for the musi-
cians. Of course, it is possible to create almost any score this
way, but this is not a real-time method.

One of the goals of the Quintet.net environment was the abi-
lity of creating network music in real-time; including the abi-
lity of high-level real-time composition, supporting algorithmic
methods also. Since algorithmic composition tools have a long

tradition as well, it was evident that an idea have arised to create
data bridge (a so-called pipeline) between algorithmic tools and
Quintet.net (instead of developing an own module for this pur-
pose inside the Quintet.net environment). The finally selected
tool was the Java Music Specification Language (JMSL), a Java
API for composition and performance created by Phil Burk and
Nick Didkovsky. [BURK-DIDKOVSKY, 2004]

This paper discusses how such a data pipeline was built be-
tween JMSL and Quintet.net. The usage of this data bridge lets
the user connect MaxScore, a JMSL-based Max/MSP notation
patch developed by Nick Didkovsky with the score engine of
Quintet.net, thus giving us the possibility of including real-time
score creation in the world of network music performance.

2 Different Data Models

The aim of such a bridge is translating the output of JMSL to the
input format of Quintet.net. As there is a big conceptual differ-
ence between the data models used by these environments, this is
a quite painful process. To understand the main difficulties, we
should examine these two data models separately.



Pipelining between JMSL and Quintet.net – Extended Data Model page 2 .

2.1 Quintet.net

Quintet.net uses a low-level notation format, where the data
stream contains so-called score sprites, that is, identifiers for dif-
ferent score objects (like notes, beams etc.) and positioning info
for these. The system has a big canvas, and the different score
objects get displayed at the position indicated by their coordi-
nates. Although this is a very fast and compact way for display-
ing scores (and for transmit them by network), it leads to several
problems:

• The environment doesn’t need any engraver module. In
some cases, this isn’t a problem but a feature, but in this par-
ticular case this means that the engraving process should be
done outside the existing environment, before sending any
data to Quintet.net. As engraving decisions can’t be sepa-
rated from the special displaying engine of the environment,
the engraving process can’t be done by an existing engraver
tool, like Lilypond or JMSL’s own score display environ-
ment. This all shows us that the engraver module must be
embedded in the data bridge.

• The bigger problem is that the internal format of the envi-
ronment doesn’t tell us anything about the musical content
of the scores. Therefore, it is almost impossible to do se-
rious manipulations with the data in the data model. This
shows also the fact that it would have been almost impos-
sible the development of a powerful algorithmic composi-
tional API inside the Quintet.net environment.

2.2 JMSL

The I/O data model used by JMSL is a DOM tree, a high-level
description of the musical events in a score. The output of JMSL
gives us every musical–logical information about the music in
the score. The different levels of the tree-nodes are score,
measure, staff, voice and note (there are other nodes
also, representing instruments etc., but these are enough to rep-
resent a score). Additional information for time signatures, clefs,
beaming, slurs etc. are embedded in these nodes at corresponding
levels of the tree. It can be seen that this way of score representa-
tion makes data manipulation very easy, but the structure doesn’t
have any explicit information about the engraving process of the
respective score.

3 Extended Data Model

As presented above, the data bridge between the two systems has
to realize two main tasks:

1. Convert the DOM nodes and the embedded implicit data to
explicit separate score sprites, and

2. Add engraving information to the sprites (that is, calculate
positions on the fixed canvas).

The simplest way to achieve this would have been the creation
of a simple, sequential program that first decomposes the out-
put of JMSL and after that calculates the exacts positions of the
gained score sprites. Although this solution could have worked
as well, code maintenance would have been very difficult, and it
wouldn’t have offered any serious upgrade possibility (for exam-
ple, the possibility of importing also from other score sources).
These reasons led to the decision of doing an abstract object
which was independent of any score format, and had the abi-
lity of store every kind of score data. If such an object exists, the
remainder of the task is to write the appropriate import/export
methods (in our case, an import method for JMSL and an export
one for Quintet.net).

When planning the data model used by the internal object, it
was to take in consideration that it should be able to import as
many different score formats as possible. Therefore the repre-
sentation must be a high-level score representation. If a tree rep-
resentation would be suitable for this purpose, this part of the
task would have been done, as the XML output of JMSL has
a tree representation of the musical events. Unfortunately, rep-
resenting musical content in a tree is not very convenient. In
a tree structure every node can have at most one parent node.
This means that in this representation musical contexts are nested
in each other, which is not necessarily the case in real musical
notation. A good example is a chord that runs through several
staves: the individual noteheads of such a chord belong to differ-
ent staves, but all of them belong (at the same time) to the chord,
and through this single chord, they belong also to the same voice.
So, it can be proved that although a voice node can have a child
node that is the child node of a staff node at the same time, the
voice node itself is not nested necessarily in the staff context, and
vice versa (of course, workarounds can be made to achieve the
results graphically, but that’s not the same as having this logi-
cally in the score represented with the data model).

A good choice for the data model can be a directed graph.
Having this, we can keep a hierarchy within the score events,
but this hierarchy doesn’t have to be cascade. Of course, there
is a problem with the representation of a directed graph. Unlike
there exists the widely used DOM for representing data in a tree
structure, there is no common way to represent a directed graph.
This means that the representation must be handled by own code,
which always has bigger risk than using a factory code provided
by one of the big IT groups (for representing DOM in Java, there
are very stable packages provided by organizations or compa-
nies like W3C, Apache, Sun, Oracle etc.). The problem arises
conspicuously if one wants to export the graph, as for directed
graphs the most widely used mathematical representation is a big
matrix, which in our case would have extreme sizes (as the ma-
jor part of the matrix would be empty), and it would be almost
impossible to edit by hand (which in some cases is an important
feature). But it should be considered that in fact there is no need
to export the graph itself, as the initial purpose was to create a
powerful score representation which is present only in the mem-
ory, and add methods to import and export scores in whatever
format we wanted.



Pipelining between JMSL and Quintet.net – Extended Data Model page 3 .

Let’s examine now a possible representation of a score in a
directed graph.

3.1 The Model
A graph is a collection of points and lines connecting some (pos-
sibly empty) subset of them. The points of a graph are called
„nodes” or „vertices” and the lines connecting the nodes of a
graph are called „edges” or „arcs”. A directed graph is a graph
whose edges are imbued with directedness. In our representa-
tion, the score elements are represented by nodes, and the logical
relations between them are the edges. Having directed arcs, we
can represent the hierarchy of these elements. From now on, if
we have the nodes A and B, and we have an edge e pointing from
A to B, then we say that A is the parent node of B and B is the
child node of A.

Apartly of the common score tags, a timeline was also intro-
duced in the model. The timeline is a direct child of the score
tag, and contains time event tags. These tags serve to syn-
chronize the different elements of the score, and also this is the
parent node for staves and voices (this way it’s quite easy to in-
sert ossia staves or additional voices in the middle of a score).

It should be noticed at this point that this data model is cur-
rently under development, so at this time there can be score el-
ements that don’t take part of the representation. The nodes in-
cluded in the current development phase are presented in Table 1.

Node Possibly parent
nodes

Possibly child
nodes

score time event

time
event

score

bar line,
staff, voice,
clef, key

signature, time
signature,

chord

bar line
time event,

staff

staff time event

bar line, clef,
time

signature, key
signature,
notehead

voice time event chord

clef
time event,

staff
key

signature
time event,

staff
time

signature
time event,

staff

chord
time event,

voice

notehead, beam,
crescendo,
mark, ottava,
slur, stem,
tuplet

Node Possibly parent
nodes

Possibly child
nodes

notehead staff, chord tie
beam chord

crescendo chord
mark chord
ottava chord
slur chord
stem chord flag
tuplet chord
tie notehead
flag stem

Table 1: The nodes included in the current devel-
opment state.

As one can see, there’s a big difference between the usual tree
representation of a score and this one, as staff and voice are
both children of score.

It should be pointed out that currently nodes like
instrument or staff group are not part of the score
structure. These items are planned to be added in a later state
of development. Also measure nodes are missing from the
model. This is because there is no need for them. Measures
graphically would only inform us about bar lines, but as bar lines
are explicitly included in the model, there is no need for explicit
measure tags. Logically, measures only serve to show a fixed
time amount, but this can also be calculated using the timeline
(and the current time signatures).

3.2 Data I/O
Equipped with this structure, it’s quite easy to implement meth-
ods that import data from a score represented as a tree, like
JMSL’s scores. Since a tree is also a directed graph, the JMSL
DOM tree could be used easily to build a graph like the one
above. Only a few modifications had to be done:

• The voice tags had to be separated from the staff ones.

• bar line tags had to be added to the timeline.

• notetags had to be converted to chord and notehead
tags.

• staff, voice and chord tags had to be added to the
timeline, while notehead tags had to be connected di-
rectly to staff tags.

• The implicit score data of JMSL had to be converted to ex-
plicit tags (tags like clef, beam etc.) and had to be con-
nected to the respective other tags (including time event
tags for some of these newly created ones).

The export process to Quintet.net is even more simple, as
Quintet.net doesn’t need to get any logic between the separate
tags. Therefore, the export process is quite simple: one only has



Pipelining between JMSL and Quintet.net – REFERENCES page 4 .

to iterate over the elements of the score, and export them node-
by-node (with every attribute of the nodes), in whatever possible
order. But before this would be done, a very important step can’t
be left out of the process: engraving.

4 Internal Engraver Tool
As part of the data bridge, the high-level logical score info had
to be expanded with low-level information about positioning. In
order to achieve this, an engraver module was developed. This
module operates over the score in the memory, represented as a
directed graph, but it is totally independent from the score rou-
tines (as I/O methods are also independent from the score man-
aging functions).

The engraver calculates the x and y coordinates of the ele-
ments (as every engraver). The graphical parameters of the score
sprites are to be described in a separate parameter file, so that de-
sign changes in Quintet.net doesn’t need to affect the engraver,
only the parameters used for engraving. Now I would like to
present some of the solutions that the engraver uses for position
calculations.

4.1 Horizontal Positioning
The engraver takes in consideration every object that has to have
a fixed width (these are bar lines, clefs, key- and time signatures,
chords – including their affected noteheads – , stems and flags).
The total length of these elements is first substracted from the
full length of their respecting staves, and the remainder space is
divided by the following algorithm: first, rubbers are inserted be-
tween every object. Next to this, weight values are added to these
rubbers (depending on the time amount represented by these rub-
bers), and finally the free space will be divided between these
rubbers according to the ratios of their respective weights. If
the gained distance between two of these elements is less than
the sum of the respective minimal distances, the two elements
get their minimal required spaces (the whole procedure is analo-
gous to the condensation process of gases). It should be pointed
out that the routine that calculates weights for the rubbers can
be changed externally. Currently, the weights are set to be the
logarithms of the respective durations, but this can be changed
anytime to any other function, without the need of changing the
engraver itself. (By any other function, such extreme ones can
also be imagined like sine or inverse function, or any other. Us-
ing the sine function as a weight, for example, can result in a
funny score where some of the elements are very close to each
other while others have big distances between them.)

The horizontal positions of the other elements (like beams etc.)
are being calculated using the above gained positions.

4.2 Vertical Positioning
There are objects like beams, crescendi, tuplets, etc. whose ver-
tical positions depend strongly on their parents’ positions. To
calculate the positions of these elements, a list is first created

with the affected chords’ positions, and this list is sent to a spe-
cific method. This method calculates the inclination and anchor
points of the elements, using some possible parameters, but with-
out considering the type of the object actually processed. The
algorithm used by this routine can also be changed externally,
without changing the engraver’s own code. The method currently
used first calculates a line connecting the first and last chords of
the list, and then moves this line in a way that it doesn’t cross
any of the affected chords. This algorithm might be changed in a
further state of developing to a nicer one that could calculate an
optimal inclination using the Karush-Kuhn-Tucker conditions.

It should be pointed out here that slurs and ties have their own
positioning calculation algorithm that generates cubic Bézier-
curves. This codepart has several unsolved issues at the current
state of development.

References
[BURK-DIDKOVSKY, 2004] Burk, L. B. & Didkovsky, N.:

Java Music Specification Language. An introduction and
overview. Proceedings from the International Computer Mu-
sic Conference, 2004.

[HAJDU, 2005] Hajdu, G.: ’Quintet.net: An environment for
composing and performing music on the Internet.’ Leonardo
Journal, vol. 38 no. 1, 2005.


