
CHAOS: ANOTHER TOOL FOR SYNTHESIS
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Abstract

In this paper we present a possible way to build a sound source based on a very
simple map with chaotic properties. After analyzing the main mathematical aspects
of the map, we show a method to interpret this system as an oscillator. Finally we
mention the current problems that need a solution and we examine some of the possi-
ble applications.

1 Introduction
Real instruments’ timbre usually exhibit a high level
of complexity. Even a rough description of the spec-
tral time evoluton (the envelopes of the main partials)
might require a huge amount of data, but this is still
far from a full description; for the timbre of a real
sound always has some fluctuations, some level of un-
certainty.

Sound designers must consider this if they want
to create an artificial sound that has the same rich-
ness in sound quality as a real sound. On the other
hand, playing an instrument doesn’t require the con-
tinuous conscious manipulation of thousands of data,
but normally a couple of simple gestures is just fine for
playing music; the complexity of the sound depends
broadly on the complexity of the links between the
motion of the player and the parameters of the sound1.
This is also something that must be considered when
designing an instrument.

Since complex physical modelling requires so
much computational power that this task can’t usually

1These links can usually be deduced using the laws of physics
and the physical properties of the instruments

be performed in real time, it would be essential to find
algorythms that exhibit similar properties to acousti-
cal instruments (stability of sound, small fluctuations,
few control parameters), but don’t require too much
resources in the meantime. Chaotic sequences seem
to be good candidates for this, since one can control
the level of fluctuations in a smooth and efficient way
simply by tuning the parameters of a chaotical system
(like the Ljapunov-exponent).

In this paper we present such a chaotic map, the so-
called Chirikov (or Standard) map [1].

2 The Standard Map

The Chirikov-map is a 1 + 1 dimensional classical
dynamical system with one free parameter which de-
scribes a periodically ’kicked’ pendulum in free field.
The time evolution of the system is described by the
dimensionless Hamiltonian

H(p, x, t) = p2

2
+ δ1(t)K cosx (1)

where δ1(t) is the 1–periodic Dirac-delta, which can
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be reformulated as a two dimensional compact dis-
crete map:

pt+1 = pt +K sinxt

xt+1 = pt + xt
(2)

Analyzing (1) it turns out that it describes a kicked
pendulum rotating in free field where the kicks happen
at each time unit (according to the 1–periodicity of the
Dirac-delta). This model is known as the Kicked Ro-
tator [2], a physical model broadly used in theoretical
solid-state physics. Since the phase of a pendulum is
2π–periodic, we can reformulate (2) taking the x co-
ordinate modulo 2π, thus mapping the dynamics to a
cylinder. Moreover, it can be shown that the dynam-
ics remain the same even if we take p with modulo
2π, so that we map the system to a torus. However,
for practical purposes instead of simply taking these
values modulo 2π we will scale both x and p to the re-
gion [−1; 1]. Our ’modified’ standard map is therefore
described by

p′t+1 =
1

π

(
πp′t +K sin(2πx′t) mod 2π

)
− 1

x′t+1 =

(
p′t + x′t mod 2

)
− 1

(3)

A trajectory is defined by the initial conditions
(p0, x0) and the ’kicking strength’ parameter K. Dif-
ferent trajectories ranking to several values of K are
plotted on Figures 1–6 (called ’Poincaré sections’).
As we may see, there is a transition from regular mo-
tion, represented by closed trajectories like almost-
straight lines or cycles, to chaotic, represented by the
open, ’noisy’ trajectories. For small values of K there
are trajectories that split the phase space into disjoint
mainfolds. It can be shown that the last of these ’split-
ting trajectories’ – the so-called golden KAM2 curve –
disappears at Kg ≈ 0.971635, which literally means
that the map becomes fully chaotic above this value of
K. This doesn’t mean that above this value there is no
regular motion in the phase space, however, the prob-
ability of finding a ’regular island’ in the ’chaotic sea’
drops exponentially with K above this critical value.

An important thing to mention is that this classical
map can be quantized. This results in the Quantum-
Kicked-Rotator (QKR) [2]. Without going into details

2Kolmogorov-Arnold-Moser

we just mention here that numeric simulations need to
take into consideration this quantized version of the
map as the computer itself is a quantized device.

In the rest of this paper we will refer to the standard
map according to (3), therefore we drop the apostro-
phes of x′ and p′.

Figure 1: K = 0, K = 0.05

Figure 2: K = 0.1, K = 0.2

Figure 3: K = 0.5, K = 0.97
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Figure 4: K = 2, K = 5

Figure 5: K = 15, K = 50

Figure 6: K = 250, 2000

3 Chaos as an Oscillator
One of the key benefits of the Standard Map is the
periodicity of the coordinate parameter x. As it has
been pointed out earlier, the phase space of the Stan-
dard Map corresponds to the motion of a periodically
kicked pendulum. If the kicking strength K vanished,
the pendulum would rotate freely, which corresponds
to the uniform increasement of its phase x with a con-
stant momentum (velocity) p.

Therefore, if we interpret the phase of the pendulum
as the phase of a wavetable oscillator3, for the K = 0
case we get an oscillator with a constant frequency.
The p0 coordinate of the initial point corresponds to
the ω frequency of the oscillator according to the for-
mula

p0 =
2f

f0
, (4)

where f0 is the sample rate of the system.
On the other hand, in the K → ∞ limit when the

whole phase space is chaotic, the oscillator behaves
in a noisy way. Since the range of K sin(2πxn) is
[−K;K], in the K → ∞ limit the fractional part of
this is practically a random number.

To summarize, the Standard Map serves as a phase
generator with constant frequency in the K = 0 limit
and as a noise generator in the K → ∞ limit. There-
fore we can use it as an interpolating oscillator be-
tween noisy and harmonic sounds.

Most interesting is the K ≈ Kg region. As we can
see in Figure 3, in this region there are three kinds of
trajectories:

• Trajectories that split the phase space. These cor-
respond to sounds with a definite pitch with some
small deviations in their frequencies.

• Trajectories that are restricted to a small area of
the phase space (these can be seen as circles in
the Poincaré sections). These trajectories cor-
respond to sounds with strongly modulated fre-
quencies.

• Trajectories in the ’chaotic sea’. These corre-
spond to noise.

3In which case the discrete time steps of the Standard Map
would correspond to the time quantization of the DSP.
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Trajectories of the first two types are closed, the
motion returns to the initial point in the phase space
after a periodic time relevant to that trajectory, hence
these trajectories are also called ’periodic orbits’. In
contrary, trajectories of the last type are open, these
trajectories fill the entire ’chaotic sea’. Since the com-
puter running the DSP is quantized, it can happen that
due to rounding errors a point traveling on a periodic
orbit moves to an open trajectory and vice versa. This
effect creates really nice, yet unpredictable sounds.

4 Conclusions
In this paper we presented a possible way to build
a sound source based on a simple map with chaotic
properties. This was the Chirikov (or Standard) Map
which is related to the motion of the (Quantum)
Kicked Rotator. We found that by tuning the ’kick-
ing strength’ parameter K of the model and the ini-
tial phase and momentum of the system we can create
both harmonic and noisy sounds.

Although these results are very promising, there are
many unanswered questions. First of all, although (4)
provides a formula which connects the initial condi-
tions of the system with the frequency of the gener-
ated sound for the K = 0 case, no formula is known
for cases when K 6= 0. The other big obstacle is the
lack of predictions for the trajectories, for it is practi-
cally impossible to tell whether a set of initial condi-
tions (K, p0, x0) would result in a periodic orbit or an

open one. It is even harder to guess whether an ini-
tial condition describing a periodic orbit corresponds
to a trajectory that splits the entire phase space or if
it corresponds to a small circle seen in the Poincaré
sections. Finally, the biggest problem is that currently
there’s no way to describe the modifications of a par-
ticular trajectory – hence, the generated sound – when
the value of K is changed, which is one of the most
relevant musical questions. There is a strong suspicion
that in theory it is not possible to solve this question.

In spite of these inconveniences, this chaotic oscil-
lator might still be applied in electro-acoustic music.
On one hand, it has powerful, yet unexplored possibil-
ities as a low frequency oscillator, as it can generate
almost-constant values with small and unpredictable
deviations in the low range of the parameter K. On
the other hand, for specific values of the initial condi-
tions (K, p0, x0) it makes beautiful and unique noises
which, with further processing, can serve as a fine ba-
sic material to compose with.
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