
The sadam Library

Siska Ádám

August 25, 2011

The sadam Library is a collection of externals written for Max 51. This file contains an
overview of these externals as well as a guide to install the objects and their documentation.
You’ll find the sadam.stream SDK and legal information at the end of this readme. Should
you have any question not covered by this document, please contact me at sales@sadam.hu.

1 Overview

Name Kind Description
[sadam.base64] Max Base64 encoder & unencoder object2.
[sadam.empty] Max Detect/output empty symbols.
[sadam.envelopeGenerator] Max Expr-based envelope generator for

[function] objects.
[sadam.float] Max Detect/output special floating point

values.
[sadam.gcd] Max Compute the Greatest Common Divi-

sor of two integers.
[sadam.lcm] Max Compute the Least Common Multiple

of two integers.
[sadam.limits] Max Get minimum and maximum finite

values of Max data types.
[sadam.lzo] Max Loseless data compression and de-

compression using the LZO library2,3.
[sadam.prime] Max Compute the closest prime numbers

and the prime factorization of a pos-
itive integer.

[sadam.rapidXML] Max A RapidXML4 wrapper for Max5.
[sadam.sortLists] Max Sort a set of lists simultaneously.
[sadam.split] Max Split incoming number sequence.
[sadam.stat] Max Get mean and standard deviation of a

number sequence.

1Copyright c© 1990–2008 Cycling ’74/IRCAM. See http://www.cycling74.com
2The externals sadam.base64 and sadam.lzo were commissioned by Prof. Georg Hajdu and the

Co–Me–Di–A Project to serve the network music environment Quintet.net. For more information, see
http://www.quintet.net.

3Using the LZO Library version 2.03 (30th April, 2008), Copyright c© 1996–2008 Markus Franz Xaver Jo-
hannes Oberhumer. See http://www.oberhumer.com/opensource/lzo

4Using RapidXML version 1.13, Copyright c© 2006–2009 Marcin Kalicinski. See
http://rapidxml.sourceforge.net/

1

[sadam.stream] Max Read and write binary streams.
[sadam.tcpReceiver] Max Receive data from the network using

the TCP protocol.
[sadam.tcpSender] Max Send data through the network using

the TCP protocol.
[sadam.udpReceiver] Max Receive data from the network using

the UDP protocol.
[sadam.udpSender] Max Send data through the network using

the UDP protocol.
[sadam.addSynth∼] MSP Additive synthesizer with time-

dependent parameters6.
[sadam.fofSynth∼] MSP Formant Synthesizer with time-

dependent parameters6.
[sadam.getSoundDescriptors∼] MSP Extract sound descriptors from an ar-

bitrary sound6.
[sadam.normalize∼] MSP An object that sets the gain of a source

to the level of a reference signal.
[sadam.peakExtractor∼] MSP Extract spectral peaks from a signal in

real-time6.
[sadam.phasor∼] MSP Phasor object with maximal resting

state.
[sadam.rand∼] MSP Band-limited random signal.
[sadam.sgn∼] MSP Sign of a signal.
[sadam.simpleAddSynth∼] MSP Additive synthesizer with constant

parameters6.
[sadam.standardMap∼] MSP A chaotic oscillator based on

Chirikov’s Standard Map7.
[sadam.subSynth∼] MSP Substractive synthesizer with time-

dependent parameters6.
[sadam.dom] MXJ A Document Object Model (DOM)

interface for Max5.
[sadam.sax] MXJ A Simple API for XML (SAX) inter-

face for Max5.

2 Install
If you have an older version of the sadam Library installed, it is advised to uninstall the old
version before installing the new one.

5The externals sadam.rapidXML, sadam.dom and sadam.sax were commissioned by Prof. Georg Haj-
du to be included in MaxScore. For more information, see http://www.algomusic.com/maxscore.

6The externals sadam.addSynth∼, sadam.fofSynth∼, sadam.getSoundDescriptors∼,
sadam.peakExtractor∼, sadam.simpleAddSynth∼ and sadam.subSynth∼ were commissioned
by Prof. Johannes Kretz and the ZiMT and are part of the Klangpilot Project. They are not in-
cluded in this release, instead, you can download them directly from the ZiMT Download Page at
http://www.mdw.ac.at/zimt/downloads-e.html. These externals are currently undocumented but a detailed doc-
umentation will appear in a later version of the sadam Library.

7For details, see attached paper (from the 2nd Music in the Global Village Conference, Budapest, 2009).

2

2.1 Installing the Externals
The externals compiled for the Macintosh are located in the mxo folder while the ones for
Windows are in the mxe folder. To install them, move the content of the respective folder
(depending on your system) anywhere in your Max Search Path. It is a good practice however
to keep all the (needed) files in a separate place of the Cycling ’74 folder8 – for instance,
by creating a sadam folder – to access them easily and to make later updates easier.

In addition, you need to move the file sadamLib.jar to the subfolder java/lib/ of
the Cycling ’74 folder in order to use the MXJ-based externals (currently sadam.dom and
sadam.sax).

2.2 Installing the Documentation
The documentation consists of the Max Help Files and the References.

To install the Help Files, move all files from the maxhelp folder to anywhere inside the
Cycling ’74 folder – it is a good practice though to put the Help Files to the same place as
the externals themselves to make later updates easier.

As Cycling ’74 has not officially published the method to create Reference documentation
for third-party externals, the installing method for the References might not work for later
versions of Max (it works fine for Max 5.1.8, though). First, you need to locate the refpages
folder of Max9. Then follow these steps:

1. Move the contents of max-ref to the max-ref subfolder of refpages and the con-
tents of msp-ref to the msp-ref subfolder of refpages.

2. Move the contents of max-images to the images subfolder of the max-ref sub-
folder of refpages and the contents of msp-images to the images subfolder of the
msp-ref subfolder of refpages.

3. Open the file c74 contents.xml in the max-ref subfolder of refpages and
insert the following lines (it is a good practice to put them before the first or after the last
refpage entry):

<refpage name=’sadam.base64.maxref.xml’/>
<refpage name=’sadam.empty.maxref.xml’/>
<refpage name=’sadam.envelopeGenerator.maxref.xml’/>
<refpage name=’sadam.float.maxref.xml’/>
<refpage name=’sadam.gcd.maxref.xml’/>
<refpage name=’sadam.lcm.maxref.xml’/>
<refpage name=’sadam.limits.maxref.xml’/>
<refpage name=’sadam.lzo.maxref.xml’/>
<refpage name=’sadam.prime.maxref.xml’/>
<refpage name=’sadam.rapidXML.maxref.xml’/>
<refpage name=’sadam.sortLists.maxref.xml’/>
<refpage name=’sadam.split.maxref.xml’/>
<refpage name=’sadam.stat.maxref.xml’/>
<refpage name=’sadam.stream.maxref.xml’/>

8Macintosh: /Applications/Max5/Cycling ’74
Windows: C:\Program Files\Cycling ’74\Max 5.0\Cycling ’74

9Currently /Applications/Max5/patches/docs/refpages on Macintosh,
C:\Program Files\Cycling ’74\Max 5.0\patches\docs\refpages on Windows.

3

<refpage name=’sadam.tcpReceiver.maxref.xml’/>
<refpage name=’sadam.tcpSender.maxref.xml’/>
<refpage name=’sadam.udpReceiver.maxref.xml’/>
<refpage name=’sadam.udpSender.maxref.xml’/>
<refpage name=’sadam.dom.maxref.xml’/>
<refpage name=’sadam.sax.maxref.xml’/>

4. Open the file c74 contents.xml in the msp-ref subfolder of refpages and
insert the following lines (it is a good practice to put them before the first or after the last
refpage entry):

<refpage name=’sadam.normalize∼.maxref.xml’/>
<refpage name=’sadam.phasor∼.maxref.xml’/>
<refpage name=’sadam.rand∼.maxref.xml’/>
<refpage name=’sadam.sgn∼.maxref.xml’/>
<refpage name=’sadam.standardMap∼.maxref.xml’/>

This procedure might need to be repeated each time after running the Max installer as the
installer might overwrite the folders containing the documentation.

An easier way to install the reference documentation is by simply moving it to the Cycling ’74
folder. In this case, however, the see also links might not work properly.

2.3 Additional Resources
The resources folder contains the source code of the sadam.lzo object, including the
source code of the LZO Library 2.03 itself. This is because the LZO Library is licensed un-
der GPLv2 and therefore all derivative works (like the sadam.lzo external) must be also
released using this license. To build the sadam.lzo external, you’ll need the freely available
Max SDK10, which is not allowed to be distributed with this package. After setting up the
environment, you’ll have to locate a few files in the SDK and link them to the sadam.lzo
project files. For details, see the Documentation of the Max SDK11. It also contains an addi-
tional copy of the header file sadam.stream.h, which is needed for those developers who
would like to build custom externals that can communicate with the binary streams represented
by sadam.stream (see details in Section 5). There is a paper as well (written by myself)
which was presented at the 2nd Music in the Global Village Conference (Budapest, 2009) and
which explains the backgrounds of the sadam.standardMap∼ object for those who wish
to use it.

3 Uninstall
To uninstall the sadam Library, remove all files you moved to the Max folders during instal-
lation and remove any related entries from the c74 contents.xml files in the respective
folders.

10Currently available at the website of Cycling ’74: http://www.cycling74.com.
11Also available at Cycling ’74.

4

4 Changelog
The different versions are identified by their release dates instead of version or build numbers.

2011–08–25: — Fixed DLL dependency bug on Windows.
— Added sadam.empty.
— Added sadam.limits.
— Added sadam.rapidXML.
— Added sadam.sortLists.
— Added sadam.split.
— Added sadam.dom.
— Added sadam.sax.
— Updated sadam.prime: Prime factorization added.
— Updated sadam.standardMap∼: Frequency can be changed by

user.
— Fixed sadam.float: Boolean outlets now send boolean values.

2010–12–07: — First official release.

5 Writing stream–aware externals
This short SDK lets you write third-party externals that could access or modify data contained
by a sadam.stream. It assumes that you are already familiar with the C language and the
Max SDK itself (so that you know how to build a third-party external in C for Max). The
sadam.stream objects use the globalsymbol mechanism and the notification system pre-
sented by the Max SDK Documentation. sadam.stream stores the bytes as a C++ vector
(part of the STL Library), this is the container type which will hold any data queried from the
stream and this is the container which you must use if you would like to insert data in your
stream. As you will see, it is possible to avoid the usage of a vector by sending and/or
querying the contents of the stream byte-by-byte, but this is not an efficient, therefore not a
recommended way to go.

By including the sadam.stream.h header file you will get some common strings used
by a stream. If you will not compile your code with a C++ compiler, you will need to call the
sadam stream initcommonsymbols function somewhere in your code (the best choice
is in your main function) to set these common variables.

To catch any notifications of a stream, you’ll have to write a method that responds to the
notify message12:

void myobject_notify (t_myobject * x, t_symbol * s,
t_symbol * msg, void * sender, void * data) {

if (msg == stream_after_change) {
// Do some stuff with the changed stream

} else if (msg == stream_before_clear) {
// Do some stuff with the stream before clearing it

}
// Etc...

}

12See details in the Max SDK Documentation.

5

A stream will send four types of notifications, two of them can be disabled or enabled by the
user (or by your code by invoking the proper method). Apart of this, Max will send notifications
when a stream with a particular name was created or destroyed. These are the notifications you
can get:

t_symbol * stream_binding
t_symbol * stream_unbinding
t_symbol * stream_before_change
t_symbol * stream_after_change
t_symbol * stream_before_clear
t_symbol * stream_after_clear

The first two will be sent by Max itself when a stream is bound or unbound to a symbol.
This may or may not happen, depending on Max, at each creation/deletion of an instance of
sadam.stream. The data field will contain a pointer to the t object representing the
stream that is being bound/unbound.

The next two will be sent when the stream is changed by an add*, erase*, insert*
or replace* call to the stream and can be enabled or disabled, either by the user or by you,
by setting the notifyonchange property of the stream. The data parameter will contain a
pointer to a vector containing a copy of the stream before and after it has been changed.

The last two will be sent before and after the stream is being cleared. stream before clear
will pass a pointer to a vector containing a copy of the stream in the data parameter, how-
ever, stream after clear will pass nothing.

To actually get the notifications, you’ll need to register your object with the stream you’d
like to listen to. This can be done by invoking the globalsymbol reference method
(defined in ext globalsymbol.h):

void * stream = globalsymbol_reference (x,
"foo", stream_classname->s_name);

In the example above x is the pointer to your own object and foo is the name of the stream
we wish to listen to. If the stream doesn’t exist, we’d get a NULL pointer, otherwise we’d get
an object pointer to the object holding the foo stream. Of course at some point we’ll need to
stop listening to the object (at least in our object freeing function). This is achieved by invoking
another command:

globalsymbol_dereference (x,
"foo", stream_classname->s_name);

Remember, for each call of globalsymbol reference, a de-referencing must be
called as well.

To read or modify the contents of a named sadam.stream, you’ll have to invoke one of
the internal methods of the class using object method calls. The names of these methods
are declared in sadam.stream.h and are quite self-explanatory. The parameters required
by these calls are documented in the header file itself. For methods that get bytes from the
stream (getbyte to get a single byte and getarray to get an array of bytes) you’ll have
to provide a pointer to an already initialized variable (either an unsigned char or a vector of
unsigned chars). This will hold the return value of your query.

The pointer to the object containing your stream’s data, which is required for an object method
call, is the one returned by globalsymbol reference. If nonzero, you can invoke a call
on one of its methods. Here are some examples:

6

unsigned char myByte;
vector<unsigned char> myArray;
void * s = globalsymbol_reference (x,

"foo", stream_classname->s_name);

if (! s) return;
myByte = 0xF2;
myArray.push_back (0x3E);
myArray.push_back (0x6D);
myArray.push_back (0x92);
object_method (s, stream_addbyte, myByte);
object_method (s, stream_addarray, & myArray);
object_method (s, stream_insertbyte, 2, myByte);
object_method (s, stream_getbyte, 1, & myByte);
object_method (s, stream_getarray, 0, 4, & myArray);
object_method (s, stream_clear);
globalsymbol_dereference (x,

"foo", stream_classname->s_name);

After running the above code, myByte will contain 0x3E and myArray will be 0xF2,
0x3E, 0xF2, 0x6D, 0x92, while the stream itself will be empty.

6 Copyright
As the external sadam.lzo is using the LZO Library, version 2.03 (April 30, 2008, Copyright
c© 1996–2008 Markus F. X. J. Oberhumer), which is licensed under GPLv2, this external is

released under GPLv2. You will find a copy of this license in the folder containing the source
code of the external as well as attached to the copy of the LZO library.

All other externals are licensed under the Creative Commons Attribution 3.0 Unported Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send
a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

The sadam Library comes free but without any kind of official support or warranty and
the author has no responsability for any damage, failure or any other kind of inconvenience
that might result from the use of this Library. By using The sadam Library you automatically
agree to the terms above.

7

