
Analysis, Data ReducƟon, ComposiƟon and Re-Synthesis in KLANGPILOT

Johannes Kretz Ádám Siska
InsƟtute of ComposiƟon and ElectroacousƟcs,

ZiMT, University of Music and
Performing Arts Vienna, Austria

zimt@mdw.ac.at
http://www.mdw.ac.at/zimt

ZiMT, University of Music and
Performing Arts Vienna, Austria

sales@sadam.hu
http://www.sadam.hu

KLANGPILOT is an environment for sound analysis as well as for control of sound synthesis. Currently addiƟve, subtracƟve and formanƟc synthesis
are supported in parallel through opƟmized externals for Max/MSP with mulƟ-processor support. Sound samples can be analyzed for their spectral
content as well as for their noise components. These data are then submiƩed to a process of data reducƟon, abstracƟon and simplificaƟon in order
to turn them into human readable models of sounds. AlternaƟvely the user can define such models from scratch using a highly intuiƟve set of editors
for frequencies, amplitudes, envelopes and other musical parameters. Equally one can modify the sound models obtained by analysis in the same
interface. These sound abstracƟons can be arranged into a ‘Ɵmbral score’, an extension to the classical piano roll capable of displaying detailed spectral
informaƟon as well. This new paradigm may ease composing music, where the visibility of sound details is crucial for the arƟsƟc process. Furthermore
one can create and handle hybrid sounds through a morphing algorithm, allowing the interpolaƟon between given sound models. Differently to the
classical analysis/re-synthesis approach, KLANGPILOT aims to reduce the complexity of sound descripƟon to aminimum: instead of seeking the (almost)
perfect re-synthesis of original sources, the main focus is the idea of providing a spectral score language by extending classical music notaƟon. This
new score language—which also can be connected to tools for computer aided composiƟon— could have a strong impact on electronic composiƟon,
comparable to the impact of music notaƟon and music prinƟng in earlier centuries.

IntroducƟon

When extending the creaƟon ofmusic with the use of elec-
tronics and even when using non-standard playing tech-
niques on acousƟcal instruments, we are sƟll, in some
sense, in a state similar to ‘oral culture’ (BenneƩ, 1996).
The arƟculaƟon of an expressive vocabulary, which can-
not be represented well by the tradiƟonal music score, of-
ten forces composers to use confusing or vague verbal de-
scripƟons and/or the distribuƟon of heterogeneous per-
formance material, like a paper score plus digital media.
Both verbal descripƟons and mixed performance material
lack standardizaƟon. This makes the creaƟve process diffi-
cult and performances nearly impossible to pull off with-
out the composer’s presence. Furthermore, we have to be
aware that on one hand pitch, dynamic level, and rhythm
can be notated in a way that accurately/reasonably repre-
sents the aural result, allowing the experienced musician
to imagine the sound by looking at the notaƟon. On the
other hand Ɵmbral characterisƟcs of music cannot easily
be notated with this degree of precision. We must either
use symbolic or textual descripƟon of acƟons (fingerings,
playing techniques etc.) in the case of paper scores, or save
technical parameters for computer programs in some ab-
stract file format. Both methods are not intuiƟve and effi-
cient working methods for composers.

Especially when working with sound synthesis, the need
for an extended graphical score language (that is human-
readable but sƟll can handle the complexity of all needed
sound parameters) becomes obvious. While several at-
tempts have been made, ranging from the graphical score

for LigeƟ’s ‘ArƟculaƟons’ (LigeƟ &Wehinger, 1958) to soŌ-
ware like l’Acousmographe1, none of these truly solves the
problem, since they provide post-facto symbolic represen-
taƟons of analysis put together aŌer the creaƟve process,
and are not suitable as producƟon tools. Other graphical
scores like those by John Cage or Roman Haubenstock–
RamaƟ (Karkoschka, 1972) leave much ambiguity of inter-
pretaƟon to the performer and are far less specific than
tradiƟonal scores, which restricts their usefulness to spe-
cific aestheƟc approaches.

General Design

From the very beginning the design of KLANGPILOT (Kretz,
1999, 2002) was inspired by the work of Marco
Stroppa (Agon, Stroppa, & Assayag, 2000), Jonathan
Harvey (Harvey, 1981; Machover, 1984), Jan Vanden-
heede (Vandenheede, 1991; Vandenheede & Harvey,
1985) and Steven McAdams (McAdams, 1982, 1989) and
experiences with the Patchwork environment (Laurson &
Duthen, 1989). Also the idea of accessing sub-parameters
of Ɵmbre like brightness, spectral flux, percussivity and
harmonicity as described by Grey and Moorer (Grey &
Moorer, 1978) was essenƟal.

The current version of KLANGPILOT is under development
at the Centre for InnovaƟveMusic Technology (ZiMT) at the
University for Music and Performing Arts Vienna2. It is re-
alized completely within the Max/MSP environment and
uses highly opƟmized externals for sound synthesis (pro-
grammed in C++ by Ádám Siska). The GUI, programmed by
Johannes Kretz, consists of a Score Editor (see Figure 1),

mailto:zimt@mdw.ac.at
http://www.mdw.ac.at/zimt
mailto:sales@sadam.hu
http://www.sadam.hu


Figure 1. An example score in KLANGPILOT, revealing as well the main control elements of the soŌware on the boƩom of the screen.

Figure 2. The Instrument Editor, where the base components and the envelopes of the instruments can be set.



an Instrument Editor (see Figure 2) and an Analysis Tool
(see Figure 3). The Score Editor gives a Ɵmeline view al-
lowing the arrangement and playing back of ‘notes’ (sound
events) performed by KLANGPILOT instruments. In the In-
strument Editor a KLANGPILOT instrument can be creat-
ed/edited. These instruments can use either one or several
of the supported synthesis methods simultaneously.

Figure 3. The Analysis Tool.

A KLANGPILOT instrument can also be obtained from anal-
ysis of any given sound file. Nevertheless it is recom-
mended that short sounds (a few seconds) containing a
single note or sound event are used (see Figure 3).

Data RepresentaƟon and InterpolaƟon

In order to define, edit and store synthesis parameters in a
generalised way, we developed a data format shared by all
objects of KLANGPILOT. The atomic element of our data
representaƟon is the Parameter, which may either have
the form πn or pn(t). Here, n denotes the Channel Num-
ber (the channel to which the actual parameter belongs
to) and t is a Timecode: if the Parameter is part of a Ɵme-
dependent envelope, the Timecode defines the temporal
posiƟon of the Parameter within that envelope. Parame-
ters in the form πn are collected into StaƟc Data Sets (SDS),
while those in the form pn(t) are organised into Dynamic
Data Sets (DDS).

Amplitudes, Frequencies and DuraƟons of the different
channels are all examples of Data Sets for different syn-
thesis methods. We illustrate the difference between an
SDS and a DDS through the following example: in addiƟve
synthesis, each oscillator has an instantaneous frequency
value, changing over the Ɵme. We may define the instan-
taneous frequency on the channel n as the product of the
(constant) base value ωn and the (Ɵme-dependent) enve-
lope fn(t). In this case, {ωn} ≡ Ω is an SDS while { fn(t)} ≡
F is a DDS.

The synthesizers expect a well-defined collecƟon of SDSs
and DDSs for their operaƟon. Moreover, these sets must
be dense. To understand what we mean by this, let
us suppose that a synthesis method expects the SDSs
Σ1,Σ2 . . .Σσ and the DDSs S1,S2 . . .Ss. Let nmax denote
the highest Channel Number occurring in any of the sets
Σ1 . . .Σσ ,S1 . . .Ss and let T i denote the set of every Time-
code occurring in the set Si. Then, the SDS Σi is said to
be dense if it contains a valid Parameter for every possible
Channel Number n ∈ {0 . . .nmax}, while the DDS Si is said

to be dense if it contains a valid Parameter for every possi-
ble Channel Number n ∈ {0 . . .nmax} and Timecode t ∈ T i.
Roughly speaking, synthesizers expect every descriptor of
every channel to be ‘fully defined’ in order to work.

As an example, a simple addiƟve synthesis of 50 oscillators,
each one having an amplitude and a frequency described
by two constants and two separate envelopes (each of
these having, for example, 9 breakpoint values), would re-
quire 50×2×(1+9) = 1000 parameters, which is beyond
the ‘human-readable’. To overcome this problem, we de-
veloped two separate interpolaƟon methods for SDSs and
DDSs, allowing the users to enter only a few key parameter
values and let KLANGPILOT generate the rest.

For SDSs, the engine simply interpolates every missing Pa-
rameter based on the (sparse) set of values {πn} provided
by the user. This interpolaƟon may either be linear or
exponenƟal-like; however, if the lowest Channel Number
(denoted ℓ) in the user-supplied Data Set is bigger than 0,
then the Parameters of the lowest channels would be de-
fined as πi = πℓ (0 ≤ i < ℓ). The same applies if the highest
user-provided Channel Number (denoted h) is smaller than
nmax, in which case πi = πh (h < i ≤ nmax) applies. The pro-
cess is depicted in Figure 4.

Figure 4. InterpolaƟon of a SDS (using linear interpolaƟon). The four black
points indicate the user-defined ‘sparse’ data. The dashed line is the result
of piecewise linear interpolaƟon based on the original data set. The gray
points show the ‘dense’ SDS that we get by evaluaƟng the interpolated
line at each Channel Number.

For DDSs, the interpolaƟon is slightly more complex.

Firstly, we split the user-providedDDS (denoted as {pn(t)})
into subsets according to the Channel Numbers of the Pa-
rameters: PChN

i = {pn(t)}|n=i. This way we get the disjoint
sets PChN

i , where each Parameter p ∈ PChN
i has a different

Timecode (but the same Channel Number). Then, for each
subsetPChN

i , we interpolate themissing parameters for ev-
ery t ∈ T , whereT denotes the set of Timecodes appearing
in the user-supplied DDS (formerly introduced as T i for the
specific DDS Si). At this point, we always use (piecewise)
linear interpolaƟon.

Secondly, we take the DDS generated by the previous step



(denoted as { p̃n(t)}) and split it again into subsets, this
Ɵme according to the Timecodes: PT

τ = { p̃n(t)}|t=τ . Then,
for each subset PT

τ , we interpolate the missing parameters
for every n ∈ {0 . . .nmax}. This interpolaƟon may either be
linear or exponenƟal-like.

We may see the above method as a process that first com-
putes the full envelopes of those channels which already
have at least one user-defined point, and then generates
the rest by interpolaƟng between the full envelopes. We
refer to Figure 5 for an illustraƟon of the full process.

2

4

6

8

1

2

3

4
5

0.0

0.5

1.0

Figure 5. InterpolaƟon of a DDS. The original data is shown with red dots.
The red envelopes contain only data which was already specified by the
user. We get the pink envelope aŌer the first interpolaƟon step, in which
we interpolate two missing data points on that same envelope based on
the three iniƟal user-defined data points specified for that envelope. In
the second interpolaƟon step, we interpolate the rest of the envelopes,
shown in black. The final results of the interpolaƟon are depicted as or-
ange points.

Synthesis Tools
In KLANGPILOT, synthesizers are defined as mulƟ-channel
devices. The channels of the same synthesizer — although
running the same algorithm — operate independently
from each other, with separate sets of parameters. These
parameters are defined through SDSs and DDSs: if {Σσ}∪
{Ss} denotes the set of every parameter, the parameters
belonging to the ith channel would be {πσ

i } ∪ {ps
i (t)},

where πσ
i ∈ Σσ and ps

i (t) ∈ Ss.

Regardless of the synthesis method, two SDSs are defined
by every synthesizer: the Offsets and DuraƟons of the
channels. The former defines the Ɵme when the actual
channel turns on, and the laƩer defines the Ɵme frame
unƟl which the channel is acƟve. To achieve this, the Time-
codes belonging to the ith channel of each DDS are scaled
linearly to extend between the Offset and the sum of the
Offset and the DuraƟon of the ith channel. Furthermore,
the synthesizers normalise internally every Ɵme value to
a phase between 0 and 1 (so that the biggest Offset +
Duration value would be normalised to a phase of 1).

Synthesizers may have an overall duraƟon, in which case
they would play a sound with the given duraƟon, from be-
ginning to end, when triggered. However, they have an

(opƟonal) phase input as well. If this laƩer is being used,
the synth would jump to the specified phase and ‘freeze’
unƟl a new phase value is received; when ‘frozen’, the in-
stantaneous values of parameters definedbyDDSs are kept
constant, which allows the synthesizer to ‘freeze’ the Ɵm-
bre.

Three synthesis methods have already been implemented
using the above principles:

AddiƟve.An oscillator bank; channels correspond to
oscillators.

SubtracƟve.A filter bank; channels correspond to
biquadraƟc band-pass filters.

AddiƟve formant.A method inspired by the CHANT
synthesizer (Rodet, Potard, & Barrière, 1984);
channels correspond to formant wave funcƟons
(foncƟon d’onde formanƟque, FOF).

Table 1 presents the core descriptors (except for Offsets
and DuraƟons) of the above methods.

The core parameters of the synthesizersmay bemodulated
in two differentways: on the one hand, with a sinewave os-
cillator (whichwe call ‘modulaƟon’) and, on the other, with
band-limited noise (which we denote as ‘jiƩer’). The (si-
nusoidal) modulaƟon may be described with an amplitude
and a frequency value, whereas the jiƩer is parametrized
with its amplitude and bandwidth3. Each of these modula-
Ɵon parameters are described by separate DDSs. However,
in contrast to core values, modulaƟon parameters may be
omiƩed, in which case the synthesizers would automaƟ-
cally turn modulaƟon off.

One may see that the maximum number of Data Sets de-
scribing the synthesis methods of KLANGPILOT could be
quite high: addiƟve synthesis may use up to 14, while
subtracƟve and formant syntheses up to 20 Data Sets,
although not every possible combinaƟon of modulaƟons
and core values has been implemented due to efficiency
reasons (e.g. modulaƟon of the Q–factors of subtracƟve
synthesis is not yet possible). Table 2 lists all parameters
of addiƟve synthesis; the other two cases are very similar.

Analysis Engine

The purpose of our analysis engine is to convert an
incoming signal into a set of SDSs and DDSs which can be
understood by the synthesizers. Our model follows the
approach of Spectral Modeling Synthesis (Serra, 1997),
where the signal is represented as a sum of sinusoids and
noise. The analysis comprises the following steps:

1. DecomposiƟon of the signal, using Short-Term
Fourier Transform (STFT).



Channels correspond to… Core Parameters
AddiƟve …(sinusoidal) oscillators Oscillators’ Amplitude & Frequency

SubtracƟve …biquadraƟc band-pass filters Bands’ Gain, Centre Frequency & Q–Factor
Formant …FOF generators Formants’ Amplitude, Centre Frequency & Bandwidth

Table 1.Most important parameters per synthesis channel for the different synthesis methods. Each of the above parameters is obtained as the product
of a constant base value and a Ɵme-dependent envelope. The formers are derived from SDSs while the laƩers from DDSs.

SDS DDS
Amplitudes*

Frequencies*

Modulator Amplitudes (AM)
Offsets* Modulator Frequencies (AM)

DuraƟons* Modulator Amplitudes (FM)
Amplitudes* Modulator Frequencies (FM)
Frequencies* JiƩer Amplitudes (AJ)

JiƩer Frequencies (AJ)
JiƩer Amplitudes (FJ)
JiƩer Frequencies (FJ)

Table 2. A list of every allowed SDS and DDS for addiƟve synthesis. ‘A’
stands for Amplitude, ‘F’ stands for Frequency and ‘J’ stands for JiƩer.
Starred Data Sets are mandatory.

2. ParƟƟon of the Fourier-components: we idenƟy
the Tonal Peaks and the Noise Bands within the
result of the previous step and isolate them from
the rest of the data. Tonal Peaks are the spectral
components describing pure sine waves with
high likelihood. Noise Bands are the ‘flat regions’
of the spectra which can be interpreted as white
noise filtered by single biquadraƟc band-pass
filters.

3. Data aggregaƟon: Tonal Peaks are organised into
envelopes — each envelope describing the
Ɵme-dependent parameters of a single
sinusoidal oscillator — by means of parƟal
tracking. Our parƟal tracking method
approaches the problem by disƟnguishing
between the short-Ɵme and long-Ɵme behavoiur
of a parƟal: firstly, it creates short-Ɵme
‘envelope chunks’ and secondly, these chunks
are merged into long-Ɵme envelopes. The same
procedure is applied to the Noise Bands4,
although these envelopes describe filters’
parameters instead of oscillators’.

4. Envelope reducƟon: the envelopes are organised
into ‘dense’ DDSs, containing every breakpoint
value obtained in the previous step. Then, we
reduce the number of actual Parameters
contained by the DDSs by means of piecewise
linear regression.

The algorithm that finds the Tonal Peaks as well as our
two-step parƟal tracking method was presented in (Siska,
2012). In the rest of this secƟon, we concentrate on the last
step of our analysis engine, that is, Parameter reducƟon.

Normally, a DDS obtained aŌer the 3rd step contains
much more informaƟon than what we consider ‘human-
readable’ — the number of Parameters in such a DDS is
normally well over a thousand! However, much of this in-
formaƟon can be eliminated by removing those Parame-
ters which can be reconstructed by our interpolaƟon en-
gine. Note that this is a lossy compression of the data, as
the Parameters interpolated by our interpolaƟon tool will
differ a liƩle bit from the originals in most cases; this is the
price that we need to pay in order to efficiently reduce our
Data Sets to a ‘human-readable’ size.

The reducƟon of a DDS happens in two steps, which act as
if they were the inverses of the steps involved in the DDS
interpolaƟon method, presented in SecƟon . For this
algorithm, the user needs to supply an error percentage,
describing the maximum allowed deviaƟon between a
Parameter obtained from analysis and the one
reconstructed by interpolaƟon:

1. We split the DDS generated by the analysis
(denoted as {pn(t)}) into subsets according to
the Channel Numbers of the Parameters:
PChN

i = {pn(t)}|n=i. Then, we apply the
following algorithm, starƟng with i = 0:

(a) Let j = i+1,
Λmin = {∀t ∈ T : λ min(t) =−∞}
and
Λmax = {∀t ∈ T : λ max(t) = ∞}.
Here, T denotes the set of
Timecodes appearing in the DDS
generated by the analysis.

(b) We compute, for every value
t ∈ T , the esƟmated Parameter
subset P̃ChN

j+1 using linear
extrapolaƟon, based on the
respecƟve Parameters of PChN

i
and PChN

j .
(c) We compute the allowed

minimum and maximum
deviaƟons (based on the
user-defined error percentage)
for every Parameter in P̃ChN

j+1 (we

denote these limits p̃min
j+1(t) and

p̃max
j+1(t))

(d) For every t ∈ T , we compute the
values λ̃ min

i, j+1(t) and λ̃ max
i, j+1(t),

which are the inclinaƟons of the
lines defined by

(
pi(t), p̃min

j+1(t)
)

and
(

pi(t), p̃max
j+1(t)

)
,



respecƟvely.
(e) We update the sets Λmin and

Λmax according to λ min
new(t) =

max
(

λ min
old (t), λ̃ min

i, j+1(t)
)
and

λ max
new (t) =

min
(

λ max
old (t), λ̃ max

i, j+1(t)
)
for

every t ∈ T .
(f) If λ min(t)≤ λi, j+1(t)≤ λ max(t)

holds for each t ∈ T —where
λi, j+1(t) denotes the inclinaƟon
of the line connecƟng p j+1(t)
and pi(t)—, we remove PChN

j
from the DDS and increase j by
1.

(g) Otherwise, we set i to the
current value of j and start over.

We repeat these steps as long as we don’t reach
the highest Channel Number, with some
addiƟonal consideraƟons on the boundaries
(these are i = 0 and j = nmax).

2. We execute a similar reducƟon algorithm on
each of the remaining sets PChN

i independently,
always starƟng from t = inf(T ):

(a) Let τ = t ′, where t ′ is the
successor of t within the set T ,
λ min =−∞ and λ max = ∞.

(b) We compute the esƟmated
Parameter p̃i(τ ′) using linear
extrapolaƟon, based on pi(t)
and pi(τ).

(c) We compute the allowed
minimum and maximum
deviaƟons (based on the
user-defined error percentage),
denoted p̃min

i (τ ′) and p̃max
i (τ ′).

Then, we calculate the
inclinaƟons of the lines
connecƟng these values with
pi(t).

(d) If the computed minimal and
maximal inclinaƟons are bigger
or smaller than λ min or λ max, we
subsƟtute these with the new
values, respecƟvely.

(e) If the inclinaƟon of the line
connecƟng pi(t) and pi(τ ′) lies
within the range [λ min,λ max],
we remove pi(τ) from PChN

i and
set τ to τ ′.

(f) Otherwise, we set t to the
current value of τ and start over.

We repeat these steps (for each remaining set
PChN

i ) as long as we don’t reach the highest
Timecode, with some addiƟonal consideraƟons
on the boundaries (these are t = inf(T ) and
τ = sup(T )).

Figure 6 depicts how the allowed minimum and maximum
inclinaƟons are computed for a specific reference point.

Figure 6. Finding the points that fit into the same line segment. Red dots
indicate the original values. The current ‘reference point’ is the 3rd dot
from the leŌ. The black lines indicate the computed minimum and maxi-
mum inclinaƟons for each subsequent data. The doƩed lines indicate the
inclinaƟons defined by λ min and λ max. As we can see, the 4th, 5th and 6th

would fit on the same line.

We could summarize the above procedure as follows.
Firstly, we remove those full-envelopes from the analysis
results which can be fully interpolated by the neightbour-
ing envelopes. Secondly, we take the remaining envelopes
and remove all those data points which can be interpo-
lated by the neighbouring data points. At the end, we get
a sparse Data Set which only contains the Parameters that
are crucial in order to reproduce the original informaƟon
within the error constraing given by the user.

User Interface
The graphical paradigm of the KLANGPILOT score
language can be seen as an extension of the classical
piano roll (see Figure 1). Unlike MIDI files and normal
piano roll representaƟon KLANGPILOT also supports:

• Microtones — graphically represented at the
maximum precision of eight notes, internally
stored as floaƟng point numbers allowing almost
arbitrary precision.

• Polyphonic microtonal glissandi.
• The size of the note head and the thickness of

the beam represenƟng the duraƟon of the note
give an impression of the loudness at the
beginning and the end of each note.

• The color of events can be used to indicate
different instruments.

• Labels showing the instrument’s name above
each note can be acƟvated.

• If instruments are contained in the KLANGPILOT
instrument database, their spectrum and their
envelopes can be displayed.

Rhythm is represented as posiƟon of the notes in the x-
axis. A user defined grid can be used to quanƟfy Ɵme into
beats and subdivisions of beats in a given tempo for enter-
ing metric music.



Figure 7. An instrument whose spectral properƟes were derived by interpolaƟng two exisƟng instruments in the KLANGPILOT instrument database.

Figure 8.Dynamic interpolaƟon between the two instruments. Horizontal
posiƟon denotes Ɵme while the verƟcal one sets the raƟo between the
two instruments.

In general, the design philosophy of the KLANGPILOT score
language is that the display of certain informaƟon such
as spectrum, envelopes, instrument names etc. is opƟonal
and can be enabled/disabled. The user can decide about
the complexity with which the musical informaƟon is rep-
resented at a given moment (see Figure 1).

Figure 9. Dynamic interpolaƟon between mulƟple instrument Ɵmbres.

The instrument editor is designed to give access to all pa-
rameters of sounds synthesis, while making a big effort
to reduce the complexity of representaƟon to a minimum
(see Figure 2)

Figure 10. Example drawings on the new canvas.

Currently a hybrid editor is under development, which will
allow the merging of two or three instruments staƟcally or
dynamically (see Figures 7–9).

Future Work

At themoment we are developing a new canvas object as a
replacement of Max/MSP’s LCD object for graphical repre-
sentaƟon and user interacƟon (see Figure 10). It directly
supports the touching, moving, and resizing of graphical
objects in the canvas without the need of recalculaƟng
them in the frame of Max’s message objects. In addiƟon,
new algorithms for efficient sound analysis and reducƟon
of complexity of the data for synthsis/arƟsƟc ediƟng are
explored.



References

Agon, C., Stroppa, M., & Assayag, G. (2000, Aug.). High
level musical control of sound synthesis in openmu-
sic. In Proceedings of the internaƟonal computermu-
sic conference. Berlin, Germany.

BenneƩ, G. (1996). Music since 1945 and oral culture. In
H. Dufourt & J.-M. Fauquet (Eds.), La musique depuis
1945. matériau, esthéƟque et percepƟon. Belgium:
Mardaga.

Grey, J. M., &Moorer, J. A. (1978). Perceptual evalutaƟons
of synthesized musical instrument tones. Journal of
the AcousƟcal Society of America, 62, 454–462.

Harvey, J. (1981, Winter). Mortuos plango, vivos voco: A
realizaƟon at ircam. Computer Music Journal, 5(4),
22–24.

Karkoschka, E. (1972). NotaƟon of new music. Lon-
don/New York: Universal EdiƟon. (Original: Das
SchriŌbild der Neuen Musik)

Kretz, J. (1999). Klangpilot – a soŌware environment
for control and composing syntheƟc sounds. In
H. G. FeichƟnger & M. Dörfler (Eds.), Computa-
Ɵonal andmathemaƟcal methods inmusic (Vol. 133,
pp. 255–266). Vienna: Österreichischen Computer
GesellschaŌ.

Kretz, J. (2002). Composing sounds – developing tools for
refined control of Ɵmbre in music. In G. Johannsen
& G. De Poli (Eds.), Human supervision and control
in engineering and music (Vol. 62, pp. 454–462). Vi-
enna.

Laurson, M., & Duthen, J. (1989, Nov.). Patchwork: A
graphical language in preform. In Proceedings of the
internaƟonal computer music conference (pp. 172–
175). Columbus, USA.

LigeƟ, G., & Wehinger, R. (1958). ArƟculaƟon – eine far-
bige hörparƟtur. SchoƩ Music. (Reprint of original
ediƟon)

Machover, T. (Ed.). (1984). Musical thought at ircam
(Vol. 1) (No. 1). Harwood Academic.

McAdams, S. (1982). Spectral fusion and the creaƟon
of auditory images. In M. Clynes (Ed.), Music, mind
and brain: The neuropsychology of music. New York:
Plenum Press.

McAdams, S. (1989). Psychological constraints on form-
bearing dimensions in music. Contemporary Music
Review, 4, 181–198.

Rodet, X., Potard, Y., & Barrière, J.-B. (1984, Fall). The
C«�Äã–Project: From the Synthesis of the Singing
Voice to Synthesis in General. Computer Music Jour-
nal, 8(3), 15–31.

Serra, X. (1997). Musical sound modeling with sinusoids
plus noise. In C. Roads, S. T. Pope, A. Picialli, &
G. De Poli (Eds.), Musical signal processing (pp. 91–
122). Swets & Zeitlinger.

Siska, Á. (2012, Sep.). ParƟal tracking in two steps. In Pro-
ceedings of the internaƟonal computermusic confer-
ence (pp. 559–562). Ljubljana, Slovenia.

Vandenheede, J. (1991). Jonathan harvey’s ritualmelodies.
(Manuscript. Copy available from the authors upon
request.)

Vandenheede, J., & Harvey, J. (1985, Aug.). IdenƟty and
ambiguity. the construcƟon and use of Ɵmbral tran-
siƟons and hybrids. In Proceedings of the interna-
Ɵonal computermusic conference (pp. 97–102). Van-
couver, Canada.

1 http://www.ina-entreprise.com/entreprise/activites/
recherches-musicales/acousmographe.html

2 See the ‘Downloads’ secƟon at www.mdw.ac.at/zimt.

3 For jiƩer, we use the terms ‘frequency’ and ‘bandwidth’
interchangeably.

4 This feature is not integrated into the publicly available version of
KLANGPILOT yet.

http://www.ina-entreprise.com/entreprise/activites/recherches-musicales/acousmographe.html
http://www.ina-entreprise.com/entreprise/activites/recherches-musicales/acousmographe.html
www.mdw.ac.at/zimt

	Introduction
	General Design
	Data Representation and Interpolation
	Synthesis Tools
	Analysis Engine
	User Interface
	Future Work

